Estimation of Intra-operative Brain Shift Based on
Constrained Kalman Filter

Abstract

In this study, the problem of estimation of brain shift is addressed by which
the accuracy of neuronavigation systems can be improved. To this end, the
actual brain shift is considered as a Gaussian random vector with a known
mean and an unknown covariance. Then, brain surface imaging is employed
together with solutions of linear elastic model and the best estimation is
found using constrained Kalman filter (CKF'). Moreover, a recursive method
(RCKF) is presented, the computational cost of which in the operating room
is significantly lower than CKF, because it is not required to compute inverse
of any large matrix. Finally, the theory is verified by the simulation results,
which show the superiority of the proposed method as compared to existing
method in terms of accuracy and efficiency.

Keywords: Brain shift, constrained Kalman filter, neuronavigation
systems, estimation theory.

1. Introduction

Image guided neurosurgery (IGNS) provides the exact position of surgi-
cal tools in the patient’s body. This property is employed in computer-aided
surgery and results in a more precise treatment. The accuracy of IGNS is
largely dependent on the used images. Furthermore, due to the brain tissue
flexibility, it deforms after dural opening; thus, pre-operative images are not
valid anymore, which result in a less accurate navigation. This brain defor-
mation is known as “brain shift” in which many factors are involved such
as tumor resection, gravity, pharmacologic responses, loss of cerebrospinal
fluid, etc. Another problem is that the precise impact of each of these fac-
tors is not specified [1, 2]. There are mainly two solutions for the problem
of brain shift: intra-operative medical imaging and biomechanical models
of the brain. Intra-operative MRI (iMRI) [3], intra-operative CT (iCT) [4],
and intra-operative Ultrasound (iUS) [5] fall into the first category. iMRI
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is time-consuming and requires expensive non-magnetic tools. iCT can be
harmful to health in a long time due to high dose X-ray used in it. iUS
is much cheaper than iMRI, but it generally results in lower quality im-
ages. The later approach uses physical features of brain tissues that are
expressed by partial differential equations (PDE). Afterwards, the PDE is
solved using boundary conditions and the solution of which is used to im-
prove pre-operative images. In addition, it results in high resolution images
as a result of using pre-operative ones, on which this paper is also based.

Several models have been presented for assessing the biomechanical be-
haviour of brain tissues. These models consist of mass spring model [6],
linear elastic model [7], nonlinear model [8], and mechanical model based
on consolidation theory [9]. Mass-spring model is over-simplified and has
low accuracy. In [10], it is shown that with using an appropriate finite de-
formation solution, the choice of linear elastic and nonlinear models do not
affect the accuracy. As a result, the linear elastic model is recommended
due to its reduced computations. In [11], a comparison is performed be-
tween the mechanical model and linear elastic model, that shows the elastic
model is more accurate.

The measurement of brain surface displacement is employed in [12, 13,
14, 15, 16, 17] with somewhat promising results. In [12], a method is pre-
sented to improve solution of linear elastic model using image processing
theory, the main drawback of which is dependency on view angle. In [13],
an atlas-based method is proposed and its sensitivity analysis is studied
in [14]. Optimizations are also carried out based on calculus of variation
[15], steepest gradient descent [16], and game theory [17]. The defect of the
above mentioned approaches is that only brain surface estimation error is
minimized, but subsurface tissues estimation is not investigated.

One of the well-known approaches in estimation problems is Kalman fil-
ter which is utilized for parameter estimation of dual-rate systems [18] and
MicroElectroMechanical systems [19]. If there are constraints on estimation
problem, constrained Kalman filter (CKF') will result in a more accurate es-
timation [20, 21], which is employed in [22, 23, 24]. In [22], state estimation
problem of power systems is addressed. Two algorithms for estimation with
inequality constraint are derived in [23], and a reduced-order Kalman filter
is presented in [24].

In this paper, linear elastic model is adopted and the desired estimation
is calculated using the CKF'. To this end, brain shift is considered as a Gaus-
sian random vector with a known mean and an unknown covariance. Then,
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the best estimation is found such that an upper bound of the estimation
error variance will be minimized. Furthermore, a recursive method (RCKF')
is presented to prevent computing inverse of a large matrix which results in
a less computational cost in the operating room. Moreover, superiorities of
the proposed approach over the existing methods is illustrated using finite
element method. The claims are also demonstrated by simulation results.

2. Model and Assumptions

According to the introduction, the linear elastic model is utilized as gov-
erning equations of the brain in this paper. This model with corresponding
assumptions for estimation are explained in this section.

2.1. Linear elastic model

The linear elastic model considers brain as a linear elastic continuum
with no initial stresses or strains. The energy of brain deformation due to
the external forces can be expressed as [25]

1
E= §/aTedQ+/FTudQ (1)
Q Q

where F' is the total external force applied to the body, €2 is the elastic
body, u is the displacement vector, ¢ is the stress vector, and o is the strain
vector. The relationships between stress, strain and displacement vector
are as follows

o= De,

e=Lu

where L is an operational matrix and D is the elasticity matrix that de-
scribes properties of the body [25]. According to the principle of minimum
potential energy[26], only the actual value of v can minimize (1) for a certain
body. Hence, any estimation of u is the suboptimal solution of minimizing
(1). If finite element method (FEM) be used to minimize (1), volume of the
brain will be discretized and yields the following equation for brain model
[27]

Kx=b (2)

where b € R" includes boundary conditions and surface forces, x € R" ex-
presses discrete quantities of u in the FEM’s nodes, and K € R™*" is the
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stiffness matrix that has the role of discrete equations. Unfortunately, mea-
surement of b is not possible in the operation room and consequently it is
not possible to calculate x from (2) directly. As mentioned in the introduc-
tion, brain surface imaging can be utilized to improve brain shift estimation.
Since x expresses position of all nodes in the brain, a full row rank matrix
C can be found such that the position of brain surface is calculated from x.
Then it can be assumed that

y=Cx (3)

where y € R™ (m < n) is the measurement of brain surface. Therefore, it
is not possible to calculate x from y directly.

2.2. Assumptions
The following assumptions are made to solve the problem.

(i) rank(K) = n.
(ii) An initial estimation b of b is available.

It is noted that none of the assumptions is restricting. The first assumption
is held due to (2) is obtained from a valid FEM and proper boundary con-
ditions [28]. The second assumption states that an initial estimation of b is
available, and to this end physics of the problem can be used. For instance,
it can be assumed that b is due to the gravity and loss of cerebrospinal
fluid[29].

3. Brain Shift Estimation Using Constrained Kalman Filter

To estimate brain shift by CKF, the vector b is considered as a Gaussian
random vector with mean vector b and unknown covariance matrix. There-
fore, x is also a Gaussian random vector with unknown covariance matrix,
and its mean vector (Z) using (2) can be given by

T=K"b (4)

One way to compute an estimation of z () is to estimate b, then Z can

be computed from (2) as )
=K'b (5)
where Z and b are estimates of 2 and b, respectively. This approach is known
as inverse method [29, 16]. The purpose of estimation b is to minimize



variance of estimation error of b; therefore, the following cost function is

considered R X
J=E [(b . b)] . (6)

If the cost function is minimized without any constraint, b will be found
identical to b. To improve the estimation, it is needed to define a well-
suitable constraint. By substitution of (2) into (3), one can get

y=CK'b.

It is obvious that the estimation of b should satisfy this equation. Conse-
quently, the following constraint can be considered

y=CK'b. (7)

Now b should minimize the cost function (6) subject to the constraint (7).
To solve the problem, the constraint can be adjoined to the cost function
using Lagrange multipliers; therefore, the resulting augmented cost function
can be given as

J,=E [(b )b - zS)] AT <y - OK—113> .
The expanded form of J, is
Jo = /bbe(b) db — QBT/bf(b) db
+ BTB/f(b) db 4 2\T (y - CK—lza) .
The integral of the second term is the mean of b, i.e. b. Moreover, by

considering the properties of probability density function, the integral of the
third term is equal to one; therefore, the final equation can be expressed as

J, = / bIbf(b) db— 267b + bTh
)T <y - CK—lzs) . (8)

To minimize (8), the following equations must hold

Oa _ _op +2b— 2K TCTA =0, (9)
ob

aJa o 71/\ o

o —2<y—C’K b>_0. (10)
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By pre-multiplication of CK ' in (9) and substituting CK~'b from (10),
one can get -
CK'KTC"\=y - CK™'b.

Now by inverting the matrix CK ' K~TC7T and substituting \ into (9), we
can get the estimation as

b=b+ K TCT(CK'KTCT) " (y — CK D). (11)
Once b is obtained, # can be found from (4) and (5)
t=r+ K 'K TCH(CK 'K TCT)™
x (y—CK™'b). (12)
The above estimated b minimizes (8), however the question to be an-

swered is how well x is estimated. The following theorem, which manifests
one of the contribution of the paper, answers that question.

Theorem 1. Consider equations (2), (3) and (4). If the general estimation
Zr, for a gain matriz L is given by

i, =2+ K 'L (y—C’Kﬁll;) , (13)
and the estimation error is considered as
e, =T — L%L, (14)

then

1. The general estimation is unbiased, i.e. Eley] = 0.
2. The best estimation that minimizes max (Var(er)) in the case of un-

known Cov(b) is equal to & given by (12).
3. If the estimation is computed recursively, as
T =+ K'KTCH(CKT K0T
x (y — Cy), (15)

then



Proof.

)

1)

By substitution (3) into (13), one can get
i, =2+ K 'L(Cx—CK™'b).
Now by using (4), mean of 2, can be easily calculated as
E[z.] =z

To prove the second property, it is needed to calculate the covariances
of b and x. It is valid to assume that covariance of b is a positive
definite but unknown matrix. Then we can write

E[0-b)(b-0)"] =0,

E [(3: —7)(z — E)T] — K'QKT (16)

where @ = QT > 0 is unknown. Using (13), (14), and (16), the
covariance of ey can be obtained as follows

Cov(er) = (I — K'LC) K 'QK "
x (I-K'Le)". (17)
The variance of e, is equal to the trace of the covariance matrix
Var(er) = Tr{Cov(er)}, (18)

also the following row form can be considered

i

T
(I-K'LOYKt=|" (19)

I

By using (17) and (19), (18) can be written as
Var(er) = Z 1FQl;. (20)

i=1

In general, the following equation holds for quadratic form I7Ql; for a
symmetric positive definite matrix @)

>\mm<Q>llez S lzTle S Amax(Q)llle (21)
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By using (21), the following inequality can be obtained from (20)

n

/\min(Q) Z llez S Var(eL)
i=1

< Anax(@) Y 1 (22)

i=1

All eigenvalues of () are positive and unknown, since it is an unknown
positive definite matrix. Therefore, to achieve the best estimation, it
is only possible to minimize the coefficient of the eigenvalues in (22).
Consequently, L should minimize the following cost function, which is
obtained from (19) and (22)

Jvar = Te{(I = K~'LC) K™
x KT (I - K'LC)"}. (23)

Optimal matrix L that minimizes (23) can be calculated from 2% =
0, and it is

L=KTCT (CK'K-TcT) ™"
It is obvious that by substituting L into (13), &, will be obtained equal
to (12).

III) To prove the third property, we use induction. For k = 1, we can write

Ty =01+ K 'K TCT(CK'K~ToT)™
X (y— Ciy) (24)

and by substituting #; form (15) into (24), it can be easily shown that
Zo = Z1. Then, it can be shown in a similar way that if (15) holds for
any k, it holds for k + 1.

O

The first and second properties in the Theorem 1 state that the given

estimation (12) is unbiased and has the best variance of estimation error

under unknown covariance of b. The third property shows that using the

recursive form of (15) does not increase the accuracy of estimation, then
one time computation of (12) is sufficient.

8



4. Brain Shift Estimation Using a Recursive Form of Constrained
Kalman Filter

In addition to the accuracy, estimation of brain shift should be fast due
to its application in the operating room. Furthermore, the proposed CKF
method in the previous section is directly dependent on the inverse of K,
which in practice is a very large matrix; therefore, it is computationally
expensive. To solve this drawback, in this section a recursive form of CKF
method (RCKF), which dose not use K1, is proposed.

To avoid computing K !, one can use the decomposition K = S — T,
in which S is an invertible matrix [30]. Consequently, (2) and (3) can be
written as

r=S"Tzr+ S,

25
y = Cu. (25)

To estimate x, a recursive equation can be utilized as
Fpr = S7ITdy, + S0, (26)

where &, and b are the estimation of = and b respectively. The goal of
estimation is to find b so that mean and variance of estimation error e =
x — 1z, tends to zero and be minimized, respectively. The dynamic equation
of the error can be expressed as

epy1 = S ' Te, + 57! (b — 5) : (27)

therefore, to have limy_ . E [ex] = 0, we must have

1. E[b] = E[B],
2. All eigenvalues of S™!'T are located strictly inside the unit circle.

If b is considered as o _
b=b+L(y—CK™'b), (28)

where L is an arbitrary matrix, the first condition is held. To satisfy the
second condition, the following lemma is presented.

Lemma 1. Let K = S —T, then there is a matriz S so that all eigenvalues
of STYT are located strictly inside the unit circle, if and only if

rank(K) = n,

and to find the matriz S, a pole placement problem needs to be solved.



Proof. Define K = S — T. Then, the matrix S~!7T can be written as
ST =1-S"K. (29)

Consequently, the matrix S~! leads to eigenvalue placement of the pair
(I, K). The remaining of the proof is divided into two parts:

1. what condition should be satisfied for existence of P such that all
eigenvalues of I — PK are strictly inside the unite circle?

2. If such matrix exists, is that invertible?

The matrix P exists if and only if the pair (I, K) is observable. Observability
matrix is
¢ = [KT K"I K'1> ... K"1"'",

and obviously
rank(K) = n <= rank(¢,) = n.

To prove the second part, we need to show that the matrix P is full rank if
it does exist. To this end, the Jordan form of I — PK can be written as

I — PK = MAM™,

where matrix A is a diagonal matrix with the diagonal elements which are
strictly inside the unite circle and M is the modal matrix. Pre- and post-
multiply the above equation by M~ and M respectively, one can get

M'PKM =1 - A. (30)

Since all diagonal elements of matrix A are in the unite circle, the right hand
side of the above equation is full rank; thus using this fact and Sylvester’s
law of degeneracy [31], it can be concluded that all matrices in the left hand
side involving P are full rank. O

Considering the obtained conditions for computing an unbiased estima-
tion, it is needed to find another conditions to minimize the variance of
estimation error. To this end, the recursive equation of (27) can be written
as

k
p = (S_IT)keo n Z (S_IT)i_lS_l (b _ B) 7
i=1

10



then covariance of e, can be computed as
Cov(ex) = (S_lT)kE [eoed ] {(S‘lT)k}T

S'T) ZE[eob—b] TSy

+ i (5717)" 5B [(b —b)ef| {(sT)"} (31)
+ii‘ S7) SR (6 - 5 - 5]

x STT{(s7'T)y1} "

Considering this fact that unknown variable is constant, it is desired to
find b such that minimizes the variance of e, when k goes to infinity.

According to the Lemma 1, all eigenvalues of S™'T are strictly inside
the unite circle, hence, we can write

lim /\k =0,

k—o0
lim E N = L
k—o0 4 T ' 1—
]:

where ); is the i-th eigenvalue of the matrix S—!T'; therefore, using Caley-
Hamilton theorem [31], the following equations can be stated

%

. — k

i (57 =0,

- i—1 -1 (32)
lim » (S7'1)" =({I-S7'T) .

k—o0
=1

Now (32) can be used to simplify (31) when &k goes to infinity, then the
resulting equation is

lim Cov(ex) = (I — S’IT)_1 St

k—o0

<E[b-5)e-bT| s (1-s77)",
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and using (29) it can be concluded that

lim Cov(e;) = K™'E [(b - B)T] KT

k—o0

Finally, by substituting b from (28) and using (16) the following equation

is obtained
lim Cov(ex) = (I — K'LC)

k—oo
x K'QKT (I - K'LO)" .

By comparison the computed covariance with (17), it is obvious that
they are equal, thus b which can minimize variance of the error is identical
to b in (11). The main problem is existing X' in (11) which can be
addressed using the following theorem.

Theorem 2. Let

b=b+ Zy (252, (y— Z50)

33
Zk — SiTTTZkfl + SchvT ( )

where Zs, is the steady state of Zy,, then b is identical to b given by (11).
Proof. Let Z be defined as

7 =K1o", (34)
then by substituting Z into (11), the resulting equation is

b

b+ 2 (272) " (y— Z7h). (35)
By pre-multiplication KT into (34) and using K = S — T, one can get
Z=8"T1"7 + 57TCT. (36)

If all eigenvalues of S™TT7 are strictly inside the unite circle, (35) and (36)
can be considered as the steady state value of (33).
The matrix S~TT7 is given by

ST =1 -5 TKT. (37)
The transpose of (29) is

I —K'S™ = MTAMT (38)
12



where M is the modal matrix and A is a diagonal matrix, the diagonal
elements of which are the eigenvalues of S~'T. If (38) be pre- and post-
multiplied by S~ and ST respectively, then

[—STKT = (MTST) " AMTST. (39)

Now, given (37) and (39), it can be concluded that the eigenvalues of S~ T7T
and S~!T are equal. Furthermore, according to Lemma 1, the matrix S is
selected such that all eigenvalues of S™!T are strictly inside the unite circle
which completes the proof. [l

Considering the presented Lemma 1 and Theorem 2, the developed es-
timation approach using (26) and (33) does not need K ! and is optimal
under unknown covariance of b. Therefore, our proposed approach is com-
putationally efficient.

5. Simulation

In this section, a comparison among the proposed RCKF algorithm,
CKF algorithm and one existing approach is done. The existing approach
is steepest gradient descent algorithm (SGD) [16], in which a cost function
is defined for the brain surface estimation error with constraint on brain
model, then it is minimized using steepest gradient descent method.

To solve model’s equation and simulation, one needs a software which
is able to solve PDEs. A well-known software in this field is COMSOL
Multiphisycs which solves PDE equations as FEM in one, two and three
dimensional. Furthermore, A computer with Intel Quad Core i5 with 4
GB of ram running Windows 7 64bit is used to simulate deformation and
estimate it.

Accuracy of linear elastic model relies on selection of Young’s modulus
and Poisson’s ratio and the following values are used for them respectively

[27]

E =3kPa
v =045

In this simulation, brain’s physical model is assumed as a sphere 22cm
in diameter which is approximately the same as the men’s brain and has
been used in researches [11, 32].
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5.1. Boundary Conditions

To solve PDE equations, it is needed to segment the brain and define
appropriate boundary condition of each segment. The segments are depicted
in Fig. 1 and boundary condition of each segment is considered as follow:

part 1. This part expresses the brainstem and is considered fixed position.

part 2. This part involves middle region of the brain and is considered to
move along the skull. Consequently, brain tissues can not exit from
the skull.

part 3. This part is the region under surgery and can move freely.

5.2. Mesh

To solve the problem numerically, volume of the body should be subdi-
vided to smaller geometries, called elements. The subdivision of the body is
called mesh that in three dimensional can be divided to categories like tetra-
hedral, hexahedral and mixed-element meshes. There are many researches
on the effects of different types of elements in a mesh on the accuracy of
solutions [33], and results express that the appropriate meshes for medical
filed is tetrahedral meshes. The Fig. 2 depicts tetrahedral meshes of the
used sphere.

5.3. Simulation Results

After the preceding steps, it is possible to simulate the deformation. The
Fig. 3 expresses simulation results and Fig. 4 depicts different cross sections
of sphere and field of deformation.

Now the deformation is simulated, in order to estimate that the esti-
mation approaches can be used. To this end, it is assumed that the initial
estimation is zero, i.e. b = 0. The Fig. 5 depicts actual and estimated
deformation computed by RCKF. In FEM, elements are interconnected at
points called nodes. Each unique node, has its own unique number, and the
Node number in Fig. 5 refers to these numbers.

In order to show that the result of RCKF tends to the estimation of CKF,
the norm of estimation error of RCKF per iteration is indicated in solid line,
and that of CKF in dashed line in Fig. 6. It can be seen that RCKF has
resulted in a more accurate estimation after 37 iterations (Iter,,;,). This
difference in the accuracy is due to round-off error, which has occurred in
the inverting K.

As illustrated in Fig. 7, the maximum of error in the proposed RCKF

and CKF is lower than the maximum error in SGD. In order to draw a
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comparison, specifications of estimation error along with computation time
of estimation approaches are reported in Table 1. To have a more accurate
computation time, each estimation is computed 10 times and average of
intra-operative computation times are listed in the Table 1.

It can be inferred from the Table 1 that RCKF is superior in terms of
accuracy, and has the minimum intra-operative computation time. RCKF,
therefore, is computationally effective and accurate.

6. Conclusions

In this paper, brain surface imaging together with CKF was employed
to improve the responses of linear elastic model which can be utilized to in-
crease the accuracy of neuronavigation systems. Furthermore, it was shown
that the computed estimation is optimal under some conditions. More-
over, a recursive approach (RCKF) was proposed, which does not require
to calculate inverse of a large matrix. Finally, it was shown that RCKF is
computationally effective as well as optimal.
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Table 1: Summary of the norm and the maximum of estimation error
(norm(e) and max(e)) and intra-operative computation time (t;n¢q) of es-

timation approaches.

Estimation approach t;u;4(s) mnorm(e)(m) max(e) (m)
RCKF 40 81x10% 3.71x10™
CKF 61.8 82x107°  3.81x107*
SGD 177 25 x 1073 9.31 x 1074
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Figure 1: The defined boundary conditions of model. Surface 1 is fixed,
surface 2 can move along the skull but not along the normal direction, and
surface 3 is free.

Figure 2: The result of meshing the volume.
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Figure 3: The result of simulation of deformation using linear elastic model.
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Figure 4: The slice plot and filed of deformation.
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Figure 5: The real deformation and estimation of RCKF.
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Figure 6: The norm of estimation error of CKF (dashed line) and RCKF
per iteration (solid line).
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Figure 7: Estimation error of SGD (a), CKF (b), and RCKF (c).
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